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Abstract

Reinforcement learning has a rich history in neuroscience, from early work on dopamine as a reward
prediction error signal for temporal difference learning (Schultz et al., 1997) to recent work suggesting
that dopamine could implement a form of ‘distributional reinforcement learning’ popularized in deep
learning (Dabney et al., 2020). Throughout this literature, there has been a tight link between theoretical
advances in reinforcement learning and neuroscientific experiments and findings. As a result, the theories
describing our experimental data have become increasingly complex and difficult to navigate. In this
review, we cover the basic theory underlying classical work in reinforcement learning and build up
to an introductory overview of methods used in modern deep reinforcement learning that have found
applications in systems neuroscience. We start with an overview of the reinforcement learning problem
and classical temporal difference algorithms, followed by a discussion of ‘model-free’ and ‘model-based’
reinforcement learning together with methods such as DYNA and successor representations that fall
in between these two categories. Throughout these sections, we highlight the close parallels between
the machine learning methods and related work in both experimental and theoretical neuroscience. We
then provide an introduction to deep reinforcement learning with examples of how these methods have
been used to model different learning phenomena in the systems neuroscience literature, such as meta-
reinforcement learning (Wang et al., 2018) and distributional reinforcement learning (Dabney et al., 2020).
Code that implements the methods discussed in this work and generates the figures is also provided.

1 Introduction

Humans and other animals learn from their experiences. Sometimes, this takes the form of explicit demon-
stration, as is often the case in our educational system. However, we often have to infer a good course of
action on the basis of trial and error together with feedback received from the world around us – sometimes
implicit and sometimes explicit. This is well illustrated by the classical case study of Pavlov’s dogs, who
learned to associate a so-called ‘conditioned stimulus’ (CS; e.g. the ringing of a bell) with the availability
of food shortly after. Following a brief period of learning, the dogs would start to salivate in response to
the CS in advance of any food actually being served. This suggests that the dogs had learned to associate
the CS with the availability of ‘reward’ in the form of food, and that they produced an appropriate physio-
logical response to take advantage of this food availability. Importantly, this occurred without any explicit
instruction or description of the sequence of events preceding food being served. Instead, the dogs learned
from their actual experience with their environment and the presence of a salient, rewarding stimulus.

Such passive stimulus-response predictions are also called ‘Pavlovian learning’ and have been commonly used
in neuroscience to study learning from external rewards (Niv, 2009). This forms a specific instantiation of
the concept of ‘reinforcement learning’, which is a general term for settings where an agent has to learn
on the basis of reward signals from the environment rather than explicit demonstration, as is the case in
‘supervised learning’. Importantly, the past decades have shown that principles of reinforcement learning can
be used to explain not just behaviour, but also neural activity in biological circuits (Niv, 2009). An explicit
neural basis of RL was initially demonstrated in foundational work by Schultz et al. (1997), which showed
that the firing rates of dopaminergic neurons in the Ventral Tegmental Area (VTA) reflect the difference
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between expected and actual ‘value’ when animals received a juice reward following a CS consisting of
a lever-press in response to a small light turning on. This provided a potential neural substrate of the
classical ‘temporal difference’ learning algorithm, which has since been expanded to a wealth of evidence
for reinforcement learning in neural dynamics (Niv, 2009; Dabney et al., 2020). However, these classical
algorithms are generally restricted to simple problem settings, while humans and other animals are capable
of solving complex high-dimensional problems involving extended planning and complex motor control. The
field of ‘deep reinforcement learning’ has recently emerged to tackle such problems in a machine learning
setting, which has led to impressive results across a range of tasks (Mnih et al., 2013; Schrittwieser et al.,
2020; Wurman et al., 2022; Vinyals et al., 2019). Intriguingly recent research has demonstrated that these
deep RL algorithms also have parallels in both behaviour and neural dynamics (Botvinick et al., 2020; Wang
et al., 2018; Dabney et al., 2020; Jensen et al., 2023), suggesting that the field of neuroscience can continue
to learn from advances in reinforcement learning.

In this review, we provide an overview of the reinforcement learning problem and popular algorithms, with a
particular focus on parallels and uses of these algorithms in neuroscience. This overview starts from classical
tabular TD learning and Q-learning algorithms, which have guided neuroscientific research for decades.
We then consider the important distinction between model-based and model-free reinforcement learning,
as well as methods that fall somewhere in the gray area between these extremes, and discuss their neural
correlates. Finally, we generalize the tabular methods to the non-linear function approximation setting and
the resulting deep RL methods, which have revolutionized machine learning in recent years. We do this with
a focus on methods that have had a strong influence on neuroscience to give the reader a better idea of the
mathematical and computational background of recent neuroscientific findings. These include the ‘meta-
reinforcement learning’ model of PFC by Wang et al. (2018) and the ‘distributional reinforcement learning’
model of VTA dopaminergic neurons by Dabney et al. (2020) in particular. We hope this introduction to
RL for neuroscience will be useful both for those who are interested in the theory underlying reinforcement
learning in neuroscience and for those who want an overview of how the neuroscientific literature builds
on principles from reinforcement learning theory. Throughout the paper, the focus will be on an intuitive
understanding of the relevant RL methods, and explicit derivations are included only where we consider
them conducive to such understanding. We refer to Sutton and Barto (2018) for a more in-depth treatment
of the underlying theory.

2 Problem setting

Here we provide a short introduction to the reinforcement learning problem in a discrete state and action
space with a finite time horizon. For a more general treatment, we refer to Sutton and Barto (2018). In the
discrete problem setting, the environment consists of states s ∈ S, and the agent can take actions a ∈ A.
The environment is characterized by transition and reward probabilities p(st+1, rt|st, at), where rt is the
reward at time t. We will use r(st, at) to denote either the reward when it depends deterministically on the
state and action, or its expectation otherwise. We will further make the Markov assumption that the next
state only depends on the current state and action, p(st+1, rt|st, at, st−1, at−1, ..., s0, a0) = p(st+1, rt|st, at).

We can now define a trajectory τ = {st, at, rt}Tt=0, where

p(τ) = p(s0)

T∏
t=0

p(st+1, rt|st, at)p(at|st). (1)

p(at|st) is the probability of taking action at in state st, which is usually controlled by the agent and denoted
a policy π(at|st) (Figure 1A). The objective of the agent is to maximize the expected total discounted reward

J(π) = Eτ∼p(τ) [Rτ ] = Eτ∼p(τ)

[
T∑

t=0

γtrt|τ

]
, (2)

where Rτ :=
∑T

t=0 γ
trt|τ and we have written J(π) since the policy uniquely specifies J in a stationary

environment. In Equation 2, γ is a ‘discount factor’, which stipulates that we should care more about
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Figure 1: The reinforcement learning problem and cliffworld environment. (A) Illustration of the
reinforcement learning problem. An agent (the chick) has to interact with the world to maximize its lifetime
reward. This involves a balance between exploring potentially interesting states (e.g. learning to fly) while
also exploiting states known to yield high reward (e.g. sitting in the nest and eating food brought back by
its parents). At any given point in time, the chick is in some state st from which it can take an action
at, with the probability of different actions determined by the ‘policy’ π(a|st), which is controlled by the
agent. at then leads to a change in the environment according the non-controllable environment dynamics
st+1, at ∼ p(st+1, rt|st, at). Here, rt is the empirical ‘reward’ received by the agent, and its objective is
to collect as much cumulative reward as possible. Often, reinforcement learning problems are divided into
‘episodes’, with the agent learning over the course of multiple repeated exposures to the environment. This
could for example consist of the chick learning over the course of multiple days when to wake up in anticipation
of its parents bringing back food. (B) The ‘cliffworld’ environment, which will be used to demonstrate the
performance and behaviour of a range of reinforcement learning algorithms in this work. The agent starts
in the lower left corner (location [0, 0]), and the episode finishes when it encounters either the ‘cliff’ (dark
blue) or the goal (yellow; location [9,0]). If the agent walks off the cliff, it receives a reward of -100. If it finds
the goal, it receives a reward of +50. In any other state, it receives a reward of -1. Such negative rewards
for ‘neutral’ actions are commonly used to encourage the agent to achieve its goal as fast as possible. The
arrows indicate the ‘optimal’ policy, which takes the agent to the goal via the shortest possible route that
avoids the cliffs.

immediate rewards than rewards far in the future. We can provide three interpretations for this discount
factor. One is that agents intrinsically care more about immediate reward than distant reward. A second
is that there is a finite probability (1 − γ) of the current ‘episode’ or environment terminating or changing
at each timestep, in which case we should weight putative future reward by the probability that we are still
engaged in the task at that time. The third view is that γ simply provides a tool for reducing the variance
of our learning methods, especially in temporally extended tasks. This third view is most compatible with
the fact that evaluation of our RL agents at the end of training is generally done without any discounting.

Since J(π) depends on the policy of the agent, it is possible to search in the space of policies for one that
maximizes J , which is the topic of reinforcement learning. It is often assumed that the experience {τ} is
generated by the agent acting according to its policy, and the resulting experience is then used to update
the policy in a way that increases J(π). However, ‘off-policy’ and ‘offline’ reinforcement learning methods
also exist, where the agent learns on the basis of experience generated by a policy different from π (Levine
et al., 2020; Section 9.3).
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3 Temporal difference learning

In classical temporal difference learning, we want to learn a value function for a given state s and policy π,
which specifies the expected future reward when following π starting from s:

Vπ(s) = Ea∼π

∑
t′≥t

γt′−trt′ |st = s

 . (3)

Here, Ea∼π[·] indicates an expectation taken over trajectories τ resulting from the agent following the policy
π. For the true value function, we can expand this as a self-consistency equation

Vπ(s) = r(s) +
∑
s′

pπ(st+1 = s′|st = s)Ea∼π

[ ∑
t′=t+1

γt′−trt′ |st+1 = s′

]
(4)

= r(s) + γ
∑
s′

pπ(st+1 = s′|st = s)Vπ(s
′), (5)

where pπ(st+1 = s′|st = s) =
∑

a π(a|s)p(st+1 = s′|st = s, at = a) is the probability of transitioning from s
to s′ under π. Importantly, Equation 5 would not hold if Vπ(s) was not the true value function (Sutton and
Barto, 2018). When learning an approximate value function V (st), we can therefore use this bootstrapped
self-consistency relation as an objective function:

L ∝ (V (st)− (r(st) + γEπV (st+1)))
2
, (6)

Gradient descent w.r.t V (st) gives us an update rule

∆V (st) ∝ −
∂L

∂V (st)
(7)

∝ −V (st) + r(st) + γEπ [V (st+1)] (8)

≈ −V (st) + rt + γV (st+1). (9)

The last line approximates the expectation over next states with a single sample corresponding to the state
and reward actually experienced. As more and more experience is collected and many small gradient steps are
taken according Equation 9, these single-sample estimates will average out to the expectation in Equation 8
(Figure 2A). Variants of this algorithm can also learn about multiple past states at once using the notion of
eligibility traces (Sutton and Barto, 2018). However, Equation 9 is the canonical temporal difference learning
rule, and it leads to learning dynamics where the temporal difference error δ := −V (st)+r(st)+γEπ [V (st+1)]
is progressively propagated from the rewarding state to prior states that predict the upcoming reward.
This forms the basis of the ‘temporal difference’ signal proposed to be represented in dopaminergic VTA
neurons (Schultz et al., 1997). At the behavioural level, such theories of dopamine as a reinforcing signal are
consistent with experiments showing that stimulation of dopamine neurons can be a strong driver of learning
in instrumental conditioning tasks, where animals have to take explicit actions to achieve rewarding outcomes
(Olds and Milner, 1954; Tsai et al., 2009). A wealth of other research also suggests a close correspondence
between midbrain dopaminergic neural activity and temporal difference learning, and we refer to Niv (2009)
and others for a more comprehensive overview.

In Equation 9, we simply learned a function for predicting reward without using this as the basis of taking
good actions. Indeed, in classical Pavlovian conditioning, there are only states which happen in a prede-
termined order with no intervention or control on the part of the agent. However, having learned a value
function, it is simple to use it for action selection if we can estimate p(st+1|st, at). In this case, the expected
reward associated with action a can be written as

E

[∑
t′=t

γt′−trt′ |at = a

]
= r(at, st) + γ

∑
st+1

p(st+1|st, at)V (st+1). (10)
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Figure 2: Temporal difference learning. (A) Value functions aquired through temporal difference
learning (Equation 9) while acting according to either a random (top) or an optimal (bottom) policy. These
simulations were performed with a random start state in the cliffworld environment to ensure full coverage of
the space. Dark blue indicates negative expected reward (-100) and yellow indicates positive expected reward
(+50). For these simulations, we used a learning rate of δ = 0.05 and no temporal discounting (γ = 1).
Under the random policy, states near the cliff have low value even though they are close to the goal, since the
agent will often fall off the cliff from there. Under the optimal policy, all states have high expected reward,
since the agent will always find the goal. States nearer the goal have higher value than those further away,
although this is hard to distinguish on this color scale. (B) Empirical reward as a function of episode number
for a TD-learning agent that acts according to Equation 11 while updating its value estimates according to
Equation 9. For this agent, action selection assumes access to a ‘one-step’ world model in order to evaluate
the consequence of each putative action. We see that the agent gradually converges to an optimal policy.
Parameters for the agent are as in (A). (C) Value function learned by a greedy TD agent as in (B), plotted
either early (top) or late (bottom) in training. Early in training, the agent has learned that the cliff is bad
but doesn’t know where the goal is or how to get there. Late in training, the agent has learned a value
function that locally resembles the optimal value function from (A), while it has not learned the value of
distant states that are rarely or never visited. This is a potential shortcoming of ‘greedy’ agents that can
easily converge to a sub-optimal local maximum in more complicated environments. For this analysis, we
used a high learning rate of δ = 0.5 to make the early TD updates larger and therefore more visible.

We can then perform action selection by choosing the action with the highest expected reward,

a∗(s) = argmaxa

r(s, a) + γ
∑
st+1

p(st+1|st, at)V (st+1)

 . (11)

Updating the value function according to Equation 9 while acting in the environment according to Equa-
tion 11 leads to an agent that gradually learns to take better actions as it learns a better value function
(Figure 2B-C).

4 Q-learning

An alternative approach for learning to select good actions (the so-called ‘control problem’) when we don’t
know the transition structure of the world is to learn the value of taking action a in state s instead of only
learning the value of the state. This gives rise to ‘Q-learning’ methods, where we learn the state-action
values

Qπ(s, a) = Ea∼π

[∑
t′=t

γt′−trt′ |st = s, at = a

]
. (12)
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Figure 3: Q-learning. (A) Empirical reward as a function of episode number for Q-learners with different
levels of stochasticity in their policy (ϵ ∈ {0, 0.1, 0.2}; legend). For these simulations, we used a learning
rate of δ = 0.05 for all agents and no temporal discounting (γ = 1). The agent with ϵ = 0 converges to an
optimal policy, similar to the TD agent in Figure 2A. However, convergence is in this case slower despite
using the same learning rate, because the Q-learner has to learn about each action independently, while the
TD agent used its one-step world model to aggregate learning across actions reaching the same state. In this
cliffworld environment, increasing epsilon leads to worse performance since it increases the probability of
falling off the cliff. Additionally, there is no risk of getting stuck in a local minimum since there is only one
rewarding state, which decreases the value of exploration. Lines and shading indicate mean and standard
error across 10 simulations. (B) As in (A), now for a non-cliffworld grid environment with two goals: one
with a reward of +20 at location (0, 4), and one with a reward of +50 at location (5,0). In this case, having
non-zero epsilon can increase the probability of discovering the ‘high reward’ goal rather than getting stuck
with a locally optimal policy of moving to the ‘low reward’ goal. In these simulations, we used a learning
rate of δ = 1, since this effect is less robust with lower learning rates that lead to more exploration of the
environment across all agents. (C) Policy learned by a Q-learning (top) or a SARSA (bottom) agent with
ϵ = 0.2. Colours indicate the maximum value of any action in a state from blue (-100) to yellow (+50),
and arrows indicate which action has the highest value. The Q-learning agent learns to move right above
the cliff, because this is the optimal thing to do under the assumption that subsequent actions are also
optimal. This is because it is an ‘off-policy’ algorithm that does not take into account the actual policy of
the agent. In contrast, the SARSA agent learns to move a ‘safe distance’ away from the cliff, since it is an
‘on-policy’ algorithm that takes into account the finite probability of the agent choosing to move off the cliff
from upcoming states. Q-learning agents are also frequently trained using a stochastic ϵ-greedy policy and
then evaluated with the greedy policy corresponding to ϵ = 0, or they can be trained while ‘annealing’ ϵ
from some finite value to 0 over many episodes.

Given these state-action values, it is simple to perform action selection by taking the action with the highest
expected reward in a given state,

a∗(s) = argmaxaQ(s, a). (13)

To learn the Q-values necessary for such action selection, we start by expanding Equation 12,

Qπ(st, at) = r(st, at) + γ
∑
st+1

p(st+1|st, at)
∑
at+1

π(at+1|st+1)Qπ(st+1, at+1). (14)

For the greedy policy πg(a|s) := δ(a, a∗(s)), this gives rise to a self-consistency expression for the state-action
values:

Qπg (st, at) = r(st, at) + γEst+1∼p(st+1|st,at)

[
maxat+1

Qπg (st+1, at+1)
]
. (15)

Importantly, this self-consistency expression only holds when the Q-values have converged to the true ex-
pected rewards, and the associated greedy policy is therefore optimal (Sutton and Barto, 2018). We can
now use Equation 15 as a loss function by defining

L ∝
(
Q(st, at)− (r(st, at) + γEst+1∼p(st+1|st,at)

[
maxat+1

Q(st+1, at+1)
]
)
)2

, (16)
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Gradient descent w.r.t Q(st, at) gives us an update rule

∆Q(st, at) ∝ −
∂L

∂Q(st, at)
(17)

∝ −Q(st, at) + r(st, at) + γEst+1∼p(st+1|st,at)

[
maxat+1

Q(st+1, at+1)
]

(18)

≈ −Q(st, at) + rt + γmaxat+1
Q(st+1, at+1). (19)

This is the so-called Q-learning update rule (Watkins, 1989; Figure 3A), where we have again estimated the
expectation over next states with the single sample actually seen by the agent.

Q-learning is guaranteed to converge to the optimal policy in the limit of infinitesimal learning rates and
infinite sampling of the state-action space (Watkins and Dayan, 1992; Sutton and Barto, 2018). However,
following the greedy policy a∗(s) = argmaxaQ(s, a) before convergence of the Q values can lead to undersam-
pling of the state-action space and poor performance. It is therefore common to either use an ‘ϵ-greedy’ policy,
π(a|s) = ϵ/|A|+(1−ϵ)δ(a, a∗(s)), or a softmax-policy, π(a|s) ∝ exp(βQ(a, s)), to collect the experience used
to update the Q values (Figure 3B). These approaches give rise to so-called ‘off-policy’ algorithms, since the
policy used in the learning update (the greedy policy) is different from the policy used for action selection
(the stochastic policy). An on-policy version of Q-learning known as ‘SARSA’ (state-action-reward-state-
action) is also commonly used, where the Q-learning update uses the Q-value corresponding to the action
at+1 sampled at the next timestep instead of the greedy action (Figure 3C):

∆Q(st, at) ∝ −Q(st, at) + rt + γQ(st+1, at+1). (20)

This will converge to the true Q values for a given policy π, similar to how the TD learning rule in Equation 9
is guaranteed to converge to the true value function for a given policy, again under assumptions of infinite
sampling of the space. In ‘instrumental conditioning’ settings, where animals have to choose between multiple
actions with different values, studies have also found evidence for midbrain dopamine neurons encoding either
quantities resembling the prediction error used for Q learning (Roesch et al., 2007; Niv, 2009) or SARSA
(Morris et al., 2006; Niv, 2009).

5 Model-free and model-based reinforcement learning

In the previous section, we developed a so-called ‘model-free’ reinforcement learning algorithm. This involves
learning a stimulus-response pattern that says ‘when in state s, take action a’. Such algorithms do not require
much computation at decision time, where there is no need to plan far into the future. However, it can require
a lot of experience with the environment to learn these model-free policies, and they can be very inflexible
in changing environments.

On the other hand, ‘model-based’ reinforcement learning uses a model of the world to simulate the conse-
quences of different actions at decision time. This can be much more data efficient, since learning a world
model is often simpler than learning a full policy (Figure 4A). However, model-based decision making can
also be computationally intensive at decision-time in complicated state spaces (Figure 4B). Such models have
recently exhibited impressive performance across a range of RL settings with large state spaces, including
atari, chess, shogi, and Go (Silver et al., 2018; Schrittwieser et al., 2020; Deisenroth and Rasmussen, 2011).

In model-based RL, experience is used to learn a transition-and-reward function p(st+1, rt|st, at) from past
experience. Once this model has been learned, it can be used for planning at decision time. This can be
done for example by expanding the Q-value relation from Equation 15:

Q(st, at) = rt + γEp(st+1|st,at)

[
argmaxat+1

Q(st+1, at+1)
]

(21)

= rt + γEp(st+1|st,at)

[
argmaxat+1

[
r(at+1, st+1) + γEp(st+2|st+1,at+1)

[
argmaxat+2

Q(st+2, at+2)
]]]

(22)

= . . . (23)

If the environment is determinstic, p(st+1|st, at) is a delta function, and otherwise the next-state expectations
may need to be approximated with multiple samples. Unfortunately, the optimization over all possible action
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sequences in Equation 21 is in general an exponentially large search problem in the planning depth, which
makes it infeasible for any reasonably sized problem setting. It is therefore common to either use ‘depth-first
search’ with limited breadth, or ‘breadth-first search’ with limited depth. In breadth-first search, we consider
all possible actions at each level of the search tree but terminate the search at a finite depth, instead using
cached ‘model-free’ state-values to estimate the reward-to-go from the termination of the search. This kind of
‘plan-until-habit’ algorithm has also been proposed as a model of human behaviour (Keramati et al., 2016).
In depth-first search, we instead sample a series of paths from st all the way to termination (or some upper
bound), using a heuristic to prioritize actions expected to be good, and then pick a path associated with
high expected reward. This is what is implemented in most Monte Carlo tree search (MCTS) methods, such
as AlphaZero (Silver et al., 2018), which uses a hardcoded transition function, and MuZero (Schrittwieser
et al., 2020), which uses a learned transition function. In both of these approaches, neural networks are used
(i) to estimate the ‘reward-to-go’ if the maximum search depth is reached before termination, and (ii) to
select which actions to evaluate during the search process. Methods for learning such value functions and
policies in neural networks are covered in more detail in Section 7.

A shortcoming of these MCTS-based approaches from a neuroscientific perspective is that they often perform
a large number of node expansions at each decision point. For example, MuZero and AlphaZero perform
800 rollouts to a leaf node for each decision that they make. While this can be done very quickly on a
computer, it seems unrealistic as a model of human decision making. In some settings, it is possible to
use more efficient algorithms once a model has been learned, such as Djikstra’s algorithm or A∗-search in
shortest-path problems (Hart et al., 1968). However, it is in general necessary to somehow trade off the
temporal opportunity cost of planning with the improvement in policy and expected reward (Botvinick and
Cohen, 2014; Agrawal et al., 2022). This has been a popular research area in cognitive science, where a
wealth of literature on ‘resource-rational’ decision making has emerged in recent years (Griffiths et al., 2019;
Callaway et al., 2022). However, this literature has often considered optimal behaviour in simple tasks with
less focus on the learning process and neural mechanisms that might implement the necessary computations.
Bridging this gap, recent work has suggested that frontal cortex might initially store a ‘model-free’ policy in
its network state and gradually update this with model-based information from the hippocampal formation
in cases where the policy improvement is expected to make up for the temporal opportunity cost (Jensen
et al., 2023). In this work, the authors found substantial policy improvements from only a few rollouts
(Vul et al., 2014), and the ‘reaction times’ of the agent exhibited similar task-related structure to human
behaviour.

While several model-based and model-free reinforcement learning methods have thus been developed and
used to model animal learning and behaviour, it remains an open question when and whether different
approaches are used. A different line of research has explicitly investigated the trade-offs between model-
based and model-free RL in biological agents (Daw et al., 2005; Geerts et al., 2020; Lengyel and Dayan,
2007), where the choice between the two approaches is thought to be guided by some notion of optimality on
the basis of available resources and uncertainty about the environment. A popular paradigm for such studies
attempting to distinguish between model-free and model-based behaviour is the so-called ‘two-step’ task
developed by Daw and colleagues (Daw et al., 2011; Momennejad et al., 2017; Wang et al., 2018; although
note Akam et al., 2015).

It has generally been accepted that humans can use both model-free and model-based decision making, with
the dorsolateral striatum being particularly important for model-free reinforcement learning (Yin et al.,
2004, 2005), and the dorsomedial striatum, prefrontal cortex, and hippocampal formation being important
for model-based decision making (Vikbladh et al., 2019; Geerts et al., 2020; Miller et al., 2017; Niv, 2009;
Killcross and Coutureau, 2003). This has interesting parallels to recent work in the motor learning literature,
where the basal ganglia were found to be sufficient for ‘habitual’ motor sequences even in the absence of
motor cortex, while motor cortex was necessary for more flexible motor behaviours that are likely to require
a high-level ‘schema’ of the task structure (Mizes et al., 2023b,a).
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Figure 4: Model-based reinforcement learning. (A) Learning curves for model-based (MB) and model-
free (MF) RL agents. In this case, the MB agent used a depth-first search to compute an optimal path at each
decision point. If a shorter path to a given state had already been discovered, the search was not continued.
The reward and transition functions of the agent were initialized to zero and the empty set respectively, and
they were gradually populated as the agent explored the environment across episodes. The MF agent was
a simple Q-learning agent with ϵ = 0 and δ = 1. The MB agent requires substantially less experience than
the MF agent for a given level of performance. (B) Wallclock time needed to run 100 episodes of cliffworld
with either the MB or MF agents from (A), as a function of the length of the environment. Although (A)
shows that the MB agent requires substantially less experience to learn a good policy, the wallclock time per
episode was much larger than that required by the MF agent. This illustrates an important balance between
model-based and model-free reinforcement learning, where MF methods usually require more experience but
MB methods require more compute for a given level of experience. In domains such as robotics, where
collecting data is very time consuming, MB methods can still be a more efficient way to reach a high level
of performance. (C) Learning curve for an agent using the successor representation (SR) together with
learning curves for the model-based agent in (A) and the greedy TD-agent from Figure 2. At episode 40
(vertical black line), the goal was moved from location (9, 0) to location (0, 4), and location (9, 0) was
instead given a reward of -5. The MB and SR agents had their reward functions updated to reflect this
change and were immediable able to adapt their policies, while the TD agent had no such mechanism for
robustness to changing reward functions. It is worth noting that an SR agent cannot always adapt to a new
reward function if the newly rewarded states have low probablity under the old policy, since the successor
matrix itself is a function of the policy. Reward curves were convolved with a Gaussian kernel (σ = 3
episodes), which is why performance appears to decrease slightly before episode 40 for the TD agent. In this
simulation, the TD and SR agents were assumed to have access to a 1-step world model at initialization,
while the MB agent had to learn the transition structure from experience. This is why the MB agent does
not exhibit faster initial learning than the SR and TD agents. (D) Learning curve for a standard Q-learning
agent (blue) or DYNA agents that perform different numbers of Q value updates for each step of physical
action (legend). In this case, the DYNA updates simply used cached experience rather than data from a
learned world model. We see that DYNA agents are able to make better use of limited experience, although
this comes at the cost of increased compute (proportional to the number of updates).
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6 The successor representation

As we saw in the previous section, an important distinction can be made between model-free reinforcement
learning methods, which cache stimulus-response mappings based on prior experience, and model-based
reinforcement learning methods, which compute a policy by simulating possible futures using a world model
at decision-time. However, Dayan (1993) introduced a new formulation of the reinforcement learning reward
function known as the ‘successor representation’ (SR), which combines some of the features of model-free
and model-based reinforcement learning. In particular, the SR allows for flexible adaptation to changing
reward functions without having to perform expensive simulations at decision time.

This formulation rewrites the expected reward starting from state s as

Vπ(s) = Eπ

[∑
t=0

γtrt|s0 = s

]
(24)

=
∑
t=0

γt
∑
s′

pπ(st = s′|s0 = s)r(s′) (25)

=
∑
s′

r(s′)
∑
t

γtpπ(st = s′|s0 = s) (26)

= rTmπ
s . (27)

Here, r is a vector of the reward associated with each state, and mπ
s is a vector of the expected discounted

future occupancy of state s′ given that the agent starts in state s and follows the policy π:

Mπ
ss′ =

∑
t=0

γtpπ(st = s′|s0 = s). (28)

The full matrixMπ, constructed from stacking themπ
s corresponding to all states s, is denoted the ‘successor

matrix’, and constructing it allows us to write down a vector of expected rewards from any state s as

vπ = Mπr. (29)

Here, we have retained the superscript π to indicate that the successor matrix depends on the policy of the
agent, which affects the expected occupancy of different states. Since this allows us to compute the value of
each state, we can perform action selection using Equation 11.

The flexibility of the successor representation arises when the reward structure of the environment changes,
r → r′. We can now compute the expected reward associated with each state under the new reward function
and old policy,

v′
π = Mπr′. (30)

Of course this new value function will lead to us eventually changing our policy and having to update M , but
it provides a better starting point than using the wrong policy and value function as in standard temporal-
difference learning (Figure 4C). Additionally, it has the appealing feature that the successor matrix can be
learned by simple temporal-difference learning when transitioning from st, analogous to Equation 9:

∆Msts′ ∝ −Msts′ + δ(st, s
′) + γMst+1s′ . (31)

Here, s′ is the set of all other states, st+1 is the next state actually observed, and the learning rule says that
transitioning from st to st+1 means that (i) we have just been in state st, and (ii) we should increase the
expected occupancy of all states commonly reached from st+1 (including st+1 itself). Alternatively, if the
transition matrix T is known, where Tss′ = pπ(st+1 = s′|st = s), the successor matrix can be computed as
the geometric series M = I + γT + γ2T 2 + . . . = (I − γT )−1.

The SR has also been proposed as a model of how humans and other animals learn and generalize (Momen-
nejad et al., 2017; Stachenfeld et al., 2017; Geerts et al., 2020; Gershman, 2018). For example, humans have
been shown to be able to adapt more readily to changes in the reward function than changes in the transition
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function in a simple sequential binary decision-making task (Momennejad et al., 2017), consistent with the
SR facilitating rapid adaptation to changes in r but only slow learning of M . Additionally, hippocampal
‘place cells’ have been proposed to encode a predictive map, with each cell corresponding to a column of M
(Stachenfeld et al., 2017). In this model, the firing of a place cell in a given location s reflects the expected
future occupancy of its ‘preferred’ location s′ conditioned on currently being at s. Stachenfeld et al. (2017)
showed that the SR model explains a range of findings in the hippocampal literature, including asymmetric
place fields on a one-dimensional track (Mehta et al., 2000) and local remapping of place fields near a barrier
(Alvernhe et al., 2011).

While the SR is perhaps the most prominent model in systems neuroscience that combines features of model-
free and model-based RL, it is not the only one. Another interesting approach that has found parallels in
the neuroscience literature is the ‘DYNA’ architecture of Sutton (1991). In this framework, a model of the
world is learned from experience and used to train a model-free policy offline by bootstrapping imagined
experience sampled from the model. This allows for more data-efficient learning of model-free policies at
the cost of additional compute during ‘rest’ but without necessarily needing more compute at decision time,
in contrast to the model-based approaches discussed previously (Figure 4D). The model used to simulate
data for offline training can either be an explicit learned world model, or it can simply be a memory buffer
of past experiences in the form of (st, at, rt, st+1, at+1) tuples. Such experience replay has proven crucial to
the success of modern deep reinforcement learning agents by allowing for higher data efficiency and reducing
the instability arising from the autocorrelated nature of online experience (Mnih et al., 2013; Schaul et al.,
2015). A prominent theory in neuroscience suggests that hippocampal replays could be implementing such
a DYNA-like algorithm by generating imagined experience used to train the model-free RL systems of the
brain (Mattar and Daw, 2018). This theory is supported by the finding that the patterns of replay exhibited
by rodents in various navigation tasks are consistent with the optimal replays of a Q-learning agent with
DYNA.

7 Deep reinforcement learning

So far, we have considered the setting of small state- and action-spaces, for which we can simply learn a
tabular policy. However, in many realistic settings, the state space is large enough that we cannot enumerate
all possible states and actions. In these cases, we instead have to rely on function approximation (Sutton and
Barto, 2018). This approach makes the assumption that similar states will also be associated with similar
state-action value functions and should therefore have similar policies. By making this assumption, we can
generalize to unseen states based on our previous experience, provided that our function approximator is
sufficiently good. Recent years have seen incredible progress in this setting by using deep or recurrent neural
networks as powerful function approximators for reinforcement learning – the domain of ‘deep reinforcement
learning’. This approach has seen an increase in interest not just in the machine learning literature, but
recently also as a model of neural dynamics and behaviour in humans and other animals (Wang et al., 2018;
Jensen et al., 2023; Makino, 2023; Merel et al., 2019; Banino et al., 2018). For a more comprehensive overview
of the links between deep RL and neuroscience, we refer the interested reader to Botvinick et al. (2020).
Modern approaches in (model-free) deep RL can largely be divided into two categories: policy gradient
methods and deep Q learning. In policy gradient methods, we directly train the network to output a policy,
whereas deep Q networks (DQNs) output a set of state-action values that can be used for action selection.

Policy gradient methods

The conceptually simplest approach for deep reinforcement learning relies on the so-called policy gradient
methods (Sutton and Barto, 2018). In this approach, we train a neural network with parameters θ to take
as input the (observable) state of the environment and directly output a policy πθ. Our goal is then to find
the setting of θ that maximizes the expected reward in Equation 2. A conceptually simple way to achieve
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this would be to define Rτ :=
∑T

t=0 γ
trt and use gradient descent with gradients given by

∇θJ(θ) = ∇θEτ∼πθ
[Rτ ] (32)

=
∑
τ

Rτ∇θpθ(τ). (33)

Here, τ ∼ πθ indicates trajectories sampled from the distribution over trajectories induced by policy πθ, and
J(θ) indicates the expectation of Rτ under πθ (c.f. Equation 2). However, evaluating Equation 33 requires
us to know how the environment will respond to our actions in order to compute the necessary derivatives,
which in general may not be the case (although some model-based deep RL approaches train a differentiable
predictive model of the environment to do this; Clavera et al., 2020). Instead, we use the ‘log-derivative
trick’, which takes advantage of the linearity of the expectation and the identity ∇θ log f(θ) = f(θ)−1∇θf(θ)
to write

∇θJ(θ) =
∑
τ

Rτ∇θpθ(τ) (34)

=
∑
τ

Rτpθ(τ)∇θ log pθ(τ) (35)

= Eτ∼πθ
[Rτ∇θ log pθ(τ)] , (36)

Since the environment does not depend on θ, we can simplify the calculation of ∇θ log pθ(τ):

∇θ log pθ(τ) = ∇θ

[
log p(s0) +

T∑
t=0

log p(st+1|st, at) + log πθ(at|st)

]
(37)

=

T∑
t=0

∇θ log πθ(at|st). (38)

Inserting Equation 37 in Equation 34 and taking a Monte Carlo estimate of the expectation, we arrive at
the REINFORCE algorithm (Williams, 1992):

∇θJ(θ) = Eτ∼πθ

[
Rτ

T∑
t=0

∇θ log πθ(at|st)

]
(39)

≈ 1

N

∑
τ∼πθ

(
T∑

t=0

γtrt

)(
T∑

t=0

∇θ log πθ(at|st)

)
. (40)

Intuitively, Equation 40 says that we should preferentially upregulate the probability of trajectories with
high reward, which will lead to downregulation of trajectories with lower reward due to the normalization of
the policy. Importantly, Equation 40 no longer requires us to differentiate through the environment – only
the policy.

While the REINFORCE algorithm is unbiased, it also has high variance, which can make learning slow and
unstable. It is therefore common to introduce modifications, which can help reduce the variance. The first
of these comes from noting that an action taken at time t cannot affect the reward received at times t′ < t.
This allows us to define Rt :=

∑T
t′=t γ

t′−trt′ and rewrite our REINFORCE update as

∇θJ(θ) ≈
1

N

∑
τ∼πθ

T∑
t=0

Rt∇θ log πθ(at|st). (41)

This is the formulation most commonly used, but it is worth noting that it is actually not the same as
Equation 40, which would require us to use Rt =

∑T
t′=t γ

t′−0rt′ . As briefly discussed in Section 2, this is
because the discount factor γ is generally used as a variance reduction method rather than an indication
that we intrinsically care less about rewards later in the task, although Equation 41 is also consistent with
an interpretation of (1− γ) as a termination probability.

12



It is also straightforward to show that for a baseline B(st) that does not depend on at,

Est,at∼pθ(st,at) [B(st)∇θ log πθ(at|st)] =
∫
st

B(st)p(st)

[
∇θ

∫
at

πθ(at|st)dat
]
dst (42)

=

∫
st

B(st)p(st) [∇θ1] dst = 0. (43)

A corollary of this result is that we can subtract such a baseline from our empirical reward and still have
an unbiased estimator while potentially reducing its variance. A common choice here is the expected future
reward

V (st) = E

[
T∑

t′=t

γt′=trt′ |st

]
(44)

This gives rise to the so-called ‘actor-critic’ algorithm

∇θJ(θ) ≈
1

N

∑
τ∼πθ

T∑
t=0

(Rt − V (st))∇θ log πθ(at|st). (45)

Intuitively, Equation 45 says that we should upregulate the probability of actions that lead to higher-
than-expected reward and downregulate the probability of actions that lead to lower-than-expected reward.
Interestingly, many studies in the neuroscience literature have suggested that the brain could be using
something akin to an actor-critic algorithm, with dorsal striatum implementing the ‘actor’ and ventral
striatum the ‘critic’ (Takahashi et al., 2008; Sutton and Barto, 2018).

Finally, it is common to reduce the variance of our gradient estimator through an approach known as
‘bootstrapping’. To implement this, we note that

E [Rt] = E[rt + γV (st+1)]. (46)

This is useful because rt + γV (st+1) has lower variance than Rt, so using this bootstrapped estimate of the
reward-to-go can reduce the noise in our gradient estimate when using finite sample sizes. We therefore
use rt + γV (st+1) to define the ‘advantage function’ At = rt + γV (st+1) − V (st), which gives rise to the
‘advantage actor-critic’ (A2C) algorithm:

∇θJ(θ) ≈
1

N

∑
τ∼πθ

T∑
t=0

(rt + γV (st+1)− V (st))∇θ log πθ(at|st). (47)

While we have considered two extreme cases of a full Monte Carlo estimate of Rt and a ‘one-step’ bootstrap,
the sum in Rt can be truncated to any order with Rt′ replaced by V (st′). In theory, this estimator remains
unbiased if our value function is correct. However, in practice the estimate of V (st′) learned by our critic
will be inexact, which introduces a bias to our parameter updates. The bootstrapping procedure outlined
above thus leads to a tradeoff between the bias and variance of our parameter updates, and the optimal
tradeoff will depend on the problem setting, network architecture, and training paradigm being used.

For these actor-critic algorithms, it is common to parameterize both the policy πθ(at|st) and the value
function Vϕ(st) with neural networks – often with a subset of shared parameters between θ and ϕ. This
leaves the problem of updating the parameters. In order to use out-of-the-box automatic differentiation
software, we do this by defining an auxiliary utility (i.e. negative loss)

J̃(θ) =
1

N

∑
τ∼πθ

T∑
t=0

(Rt − V (st)) log πθ(at|st), (48)

where Rt and V (st) are treated as constant w.r.t. θ. In Equation 48 and the following equations, we
can use either the empirical reward-to-go Rt =

∑
t′≥t γ

t′−trt′ , or we can use the bootstrapped estimate

Rt ≈ rt + γV (st+1). While J̃(θ) has no intrinsic interpretation, it is chosen such that

∇θJ̃(θ) = ∇θJ(θ). (49)
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Figure 5: Meta reinforcement learning. The results in this figure reproduce some of the preliminary
analyses in Figure 1 of Wang et al. (2018). (A)We trained a recurrent meta-reinforcement learning agent in a
two-armed bandit task, where the reward probabilities of each arm were sampled independently from U(0, 1)
at the beginning of each episode and remained fixed throughout the episode. A recurrent neural network was
trained across many episodes with different reward probabilities using an actor-critic algorithm. The input
to the agent consisted of the previous action, the pervious reward, and the time-within-trial. The average
reward per episode is plotted against the episode number, showing that the agent gradually learns to adapt
within each episode to the particular instantiation of the bandit task. Importantly, the parameters of the
network are fixed within an episode, meaning that this adaptation occurs through the recurrent dynamics.
Dashed horizontal lines indicate the reward of an agent selecting random actions and an ‘oracle’ agent
that always chooses the best arm. (B) Heatmap showing example behaviour of the agent in episodes with
different reward probabilities for the first arm, p(r|a = 1). For these plots, the probability of reward from
the second arm was set to p(r|a = 2) = 1−p(r|a = 1). Across episodes, the agent experiments with different
actions and eventually converges on taking the optimal action. For episodes with more symmetric reward
probabilities (near the middle), it takes longer for the agent to identify the optimal action. This balance
between exploration and exploitation is mediated by the recurrent network dynamics, which are learned over
many episodes using deep reinforcement learning. (C) We averaged the hidden state of the RNN over 100
episodes for different reward probabilities, ranging from high reward for action 1 (blue) to low reward for
action 1 (green), and performed PCA on the resulting matrix of average hidden states for different reward
probabilities. This figure shows the 2-dimensional embedding of neural activity in the meta-RL agent, where
we see that the agent converges to different regions of state space for different reward probabilities. Crosses
indicate the hidden state at the beginning of each episode.

The gradient of the value function loss (i.e. negative utility) is given by

∇ϕLV = ∇ϕ

∑
t

1

2
(Rt − Vϕ(st))

2 =
∑
t

−(Rt − Vϕ(st))∇ϕVϕ(st). (50)

When πθ and Vϕ share parameters, we also need to balance the gradients w.r.t. θ and ϕ in our update step.
We do this by defining δt := Rt − V (st) (or δt := rt + γV (st+1)− V (st)), introducing a hyperparameter βV ,
and maximizing the joint utility

L =
1

N

∑
τ∼πθ

T∑
t=0

(log πθ(at|st) + βV Vϕ(st))δt. (51)

Importantly, we do not propagate gradients w.r.t. ϕ or θ through the computation of δt. Finally, it is also
common to add an auxiliary entropy loss of the form LE = βE

1
N

∑
τ∼πθ

∑T
t=0

∑
a πθ(at|st) log πθ(at|st) to

encourage exploration.

While these policy gradient methods may seem far removed from neuroscience, they have had several appli-
cations in the field in recent years. For example, Li et al. (2022) recently demonstrated that an off-policy
variant known as the ‘soft actor-critic’ algorithm (Haarnoja et al., 2018) can be used to train an agent that
shapes the behaviour of C. elegans via an optogenetic action space. Networks trained with policy gradient
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algorithms have also recently attracted significant interest as models of learning and neural dynamics in the
biological brain (Wang et al., 2018; Jensen et al., 2023; Merel et al., 2019). Of particular interest, Wang et al.
(2018) suggested that frontal cortex can be well described as a recurrent deep RL agent, where the RNN
parameters are configured by learning from rewards over long periods of time from many tasks that have
a shared underlying structure. Importantly, this ‘slow’ model-free learning process gives rise to an agent
that can rapidly learn from experience with fixed parameters when exposed to a new task from the same
distribution. This is achieved by the agent learning to effectively implement a fast RL-like algorithm in the
dynamics of the network (Figure 5). This process, whereby an agent trained slowly on a large distribution
of tasks can rapidly adapt to a new task, is known as ‘meta-reinforcement learning’ and is a popular area
of research in machine learning (Finn et al., 2017; Ritter et al., 2018; Duan et al., 2016; Wang et al., 2016).
Wang et al. (2018) showed that such as meta-RL model can explain a range of neuroscientific findings,
including

• Dynamic adaptation of the effective learning rate of an agent to the volatility of the environment
(Behrens et al., 2007).

• The emergence of ‘model-based’ behaviour in the ‘two-step’ task commonly used to distinguish between
model-free and model-based RL (Miller et al., 2017; Daw et al., 2011).

• The ability of animals to get progressively faster at learning when exposed to multiple tasks with a
consistent abstract task structure (Harlow, 1949).

Recently, Jensen et al. (2023) also extended the work of Wang et al. (2018) to allow the meta-RL agent
to learn not just from physical experience, but also from imagined experience using a learned model of the
environment. This resulted in an agent that computes an intial model-free policy, which can be adaptively
improved with model-based computations when the resulting policy improvement makes up for the temporal
opportunity cost of the model-based computation. Interestingly, the response times of the resulting agent
mirrored those of human participants in a maze navigation task, where the agent similarly spent more time
‘thinking’ early in a trial and far from the goal.

Deep Q-learning

While the policy gradient methods discussed above are useful, they also have limitations. One is that most
policy gradient methods are fundamentally ‘on-policy’, which means that the data used for learning must
be sampled from the agent itself. This is necessary for the log derivative trick to work. Another is that
the gradient can have fairly high variance despite all of our variance reduction efforts. We can begin to
tackle both of these shortcomings using a method known as ‘deep Q-learning’. To do so, we first note that
our actor-critic algorithm above required us to estimate the value function Vϕ(st). However, as we saw in
Equation 11, such value functions can directly be used for action selection without having to fit a separate
policy network. We also noted previously that this requires simulating the results of the actions, which can be
inconvenient. As in the tabular setting, we can circumvent this problem by directly fitting state-action values
(‘Q-values’), now using function approximation. This gives rise to the family of ‘deep Q-learning’ methods,
which closely mirror the tabular Q-learning considered previously, but now with function approximation.

The general recipe involves defining a Q function Qθ(a, s), where the parameters θ of the deep network
defining our agent are learned as follows:

• Collect experience (st, at, rt, st+1).

• Define a loss L = 0.5[Qθ(st, at)− (rt + γmaxaQθ(st+1, a))]
2.

• Update the network parameters ∆θ ∝ −∂L
∂θ .

The above steps can either be run ‘online’ using the experience of the agent as it is being generated, or it
could occur ‘in batch’, whereby a collection of experiences is first generated, followed by optimization of the
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Q network. The ‘max’ in the target value ensures that we continuously improve our policy. When acting
according to our policy, we simply pick the action predicted to have the highest value, usually using some
variant of ϵ-greedy or softmax to introduce stochasticity and variability into our trajectories.

On the surface, the above looks like a straightforward generalization of tabular Q-learning, and it may seem
surprising that deep Q-learning did not see significant use or success until the foundational work of Mnih
et al. (2013). However, a major difficulty arises from the autocorrelation of the states observed by the
agent, which leads to the network ‘chasing’ a target function (rt + γmaxaQθ(st+1, a)) that changes with
the environment. A critical advance that overcame the resulting instability was the use of an experience
replay buffer, whereby the experience generated by the agent is added to a global replay buffer B. One or
more random experiences are then sampled from the buffer and used to update the network parameters –
reminiscent of the ‘DYNA’ architecture described previously. An additional algorithmic instability arises
from the fact that L includes the term maxaQθ(st+1, a), which we cannot take gradients through despite
its dependence on θ. This means that we are trying to optimize our parameters for a continuously moving
target, which destabilitizes the optimization process. To combat this, it is common to use a ‘target network’
Qθ′(st+1, a) that is fixed for a period of time, usually after being set to a copy of our ‘student network’.
Together, these two approaches give rise to the ‘deep Q network’ (DQN) developed by Mnih et al. (2013),
which is trained as follows:

• Collect experience (st, at, rt, st+1) and add to B [optionally many iterations].

• Sample a new experience (s′t, a
′
t, r

′
t, s

′
t+1) ∼ B [optionally a full batch].

• Define a loss L = 0.5[Qθ(s
′
t, a

′
t)− (r′t + γmaxaQθ′(s′t+1, a))]

2 [optionally averaged over the full batch].
Note that we are training the student network with parameters θ while using a target network with
parameters θ′ inside the max.

• Update the network parameters ∆θ ∝ −∂L
∂θ .

• Once we have repeated the above a sufficient number of times, set our target network to the student
network, θ′ ← θ.

As indicated above, this procedure usually involves averaging over a full batch of experience when computing
gradients. Experience can also be collected in batch, and usually ‘stale’ experiences are periodically removed
from B. It is worth noting that this algorithm is effectively off-policy, since most experience in B was
collected by a policy defined by an old set of parameters θ – and the data in B can in fact be generated
completely independently of the agent we are training. Finally, even though the above is more stable than
naive deep Q-learning, an additional instability arises from the fact that Qmax(s

′
t+1) = maxaQθ′(s′t+1, a)

uses the same Q values both to estimate which action is best and what the value of that action is, which
leads to a positively biased estimate. This can be mitigated by using separate Q networks to select the
best action and evaluate its value, Qmax(s

′
t+1)← Qθ′(s′t+1, argmaxa(Qθ(s

′
t+1, a))), in an approach known as

‘double Q-learning’ (Van Hasselt et al., 2016). Commonly, this is done by simply using the student network
for action selection and the target network to evaluate its expected value.

While DQNs have shown impressive performance across a range of machine learning settings (Mnih et al.,
2013; Lillicrap et al., 2015; Schaul et al., 2015; Kalashnikov et al., 2018), they have seen less interest from
the neuroscience community. This is perhaps paradoxical given the prevalence of tabular Q-learning in the
theoretical neuroscience literature. An interesting exception to this is recent work by Makino (2023), which
shows parallels between the values learned by a DQN and neural representations in mammalian cortex during
a compositional behavioural task. Additionally, the importance of experience replay in DQNs (Mnih et al.,
2013; Schaul et al., 2015) has close parallels to the proposal that hippocampal replay constitutes a form of
experience replay (Mattar and Daw, 2018) – although the latter was only analyzed in a tabular setting.
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Distributional reinforcement learning

In Equation 3 and Equation 12, we defined the expected reward for a given state or state-action pair. The
methods considered so far have only used such expectations as a learning signal. However, recent work has
suggested that performance could be improved by learning the full distribution of cumulative future rewards
for a given state-action pair (Bellemare et al., 2017, 2023; Dabney et al., 2018), a single sample of which we
denote Z:

Z(s, a) ∼ p

(∑
t′>=t

γt′−trt′ |st = s, at = a

)
(52)

The stochasticity of Z can both be due to stochasticity in environment dynamics and reward, and it can
be due to stochasticity in the policy of the agent itself. Clearly, the expectation of samples of Z equal the
corresponding Q value:

Ep(Z) [Z(s, a)] = Q(s, a). (53)

Instead of only estimating this expectation, we now want to learn the full distribution of returns under
our policy π, pπ(Z(s, a)). One use of learning this distribution is to develop methods that are risk averse
(Morimura et al., 2010, 2012) or explicitly take into account uncertainty (Dearden et al., 1998). However,
recent work has suggested that such a distributional approach can also lead to improved performance in
terms of expected rewards by improving representation learning in the deep RL setting (Bellemare et al.,
2017; Dabney et al., 2018; Rowland et al., 2019; Bellemare et al., 2023). Some intuition for this can be had
from noting that traditional deep RL approaches will only learn to distinguish states that have different
expected value, while distributional RL will learn to distinguish any states that have different cumulative
return distributions.

To learn pπ(Z(s, a)), one option is to define a set of ‘atoms’ that tile the (expected) support of the distribution
and then discretize the distribution by assigning the full probability mass to these discrete locations. An
approximate pπ(Z(s, a)) can then be iteratively improved using temporal differences by propagating each
atom through the Bellman equation (Equation 15), projecting the density back onto the discretized locations,
and training an RL agent to predict the corresponding probabilities. This is the approach originally employed
by Bellemare et al. (2017). However, it turns out to be more convenient from a neuroscientific perspective
to represent a different set of sufficient statistics for pπ(Z(s, a)) (Dabney et al., 2020; Lowet et al., 2020).
We do this by defining the τ th expectile of pπ(Z(s, a)), ϵτ , which is defined for a random variable Z as the
solution to the equation

τE[max(0, Z − ϵτ )] = (1− τ)E[max(0, ϵτ − Z)]. (54)

This is a generalization of the mean, which is recovered for τ = 0.5, and is similar to how the quantile
generalizes the notion of a median. A distribution is uniquely specified by its expectiles, and we can therefore
represent pπ(Z(s, a)) in terms of {ϵτ}. Translating this to an RL algorithm involves training a network (or
tabular values) to predict a set of expectiles for a given state (and action). The parameters of the agent
are then updated by propagating the distribution implied by the predicted expectiles through the Bellman
equation and minimizing the difference between the initial and propagated distributions.

In the tabular value learning case (c.f. Section 3), this turns out to be particularly simple do via the use
of a modified TD-update rule (c.f. Equation 9; Lowet et al., 2020; Figure 6A). In particular, we consider

a set of units {Vi(s)}, each with a target expectile τi :=
α+

i

α+
i +α−

i

of the return distribution pπ(Z(s)) (where

Z(s) = Ea∼π(a|s) [Z(a, s)]). These expectiles can be learned by sampling experience from the environment
under the policy and defining a TD error for each unit and state transition as

δi := rt + γZ̃j(st+1)− Vi(st). (55)

Here, Z̃j(st+1) is a random sample from the learned approximate distribution of cumulative future returns

from state st+1, p{Vi}(Z̃(st+1)) (Lowet et al., 2020; Dabney et al., 2020). We then apply the following update
rule to all units:

∆Vi(st) = α+
i max(δi, 0) + α−

i min(δi, 0). (56)
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Figure 6: Distributional reinforcement learning. The results in this figure reproduce some of the
key simulations of Dabney et al. (2020). These simulations were all run on a simple value estimation task
with a single state and no actions. (A) Distribution of rewards (black), plotted together with the values
Vi converged to across 20 units all learning through standard TD learning (blue), or through distributional

RL with different τi =
α+

i

α+
i +α−

i

(green). The TD units all converge to the mean reward, while the expectile

units end up tiling the distribution. (B) For both the TD units and distributional units from (A), we plot
the temporal difference updates performed in response to different rewards from the reward distribution.
These updates have been proposed to be represented in the firing rates of dopaminergic VTA neurons
relative to baseline (Schultz et al., 1997; Dabney et al., 2020). The TD units show a constant linear scaling
across positive and negative rewards, while the distributional units show an asymmetric scaling of firing rate
with reward magnitude above and below their reversal point (black horizontal line). The ratio of slopes
above and below the reversal point scales positively with the value of the reversal point. These features of
dopaminergic VTA neurons were used by Dabney et al. (2020) to argue that the brain implements a form
of distributional RL. (C) True reward distribution (black) reproduced from (A), now plotted together with
the reward distribution p{Vi}(Z̃) implied by the distributional units from (A) and (B) at different stages
of learning (light to dark green). These imputed distributions were computed by assuming that the value

Vi learned by unit i corresponds to expectile τi =
α+

i

α+
i +α−

i

of the reward distribution. We then impute the

distribution implied by these expectiles under the assumption that it consists of a set of N delta functions
in the case of N expectiles (Rowland et al., 2019). Finally, we convolved the resulting delta functions with a
Gaussian kernel (σ = 0.1) for visualization. This whole process was repeated using {Vi} at different stages of
learning. The units were all initialized at Vi = 0.5, so the initial distribution is a delta function at r = 0.5. At
the end of learning, the population faithfully represents the true reward distribution, capturing key features
including bimodality and the relative magnitude of the two modes. Dabney et al. (2020) used a similar
approach to infer the distribution implicitly encoded by dopaminergic VTA neurons at the end of animal
training and found a close match to the true reward distribution.

In other words, we apply the TD update rule to each unit with learning rate α+
i for positive TD errors and

learning rate α−
i for negative TD errors. When running this algorithm to convergence, Vi(s) will approach

the τi
th expectile (ϵτi) of pπ(Z(s)). In the deep RL setting, we would additionally use the chain rule to

multiply ∆Vi(st) from Equation 56 by ∂Vi(st)/∂θ and sum over i to learn a model with parameters θ that
can predict the full set of expectiles. Another variant of this algorithm updates each unit with αisign(δi)
instead of αi(δi), which leads to learning of the τi

th quartiles of the distribution instead of the expectiles.
We refer to Bellemare et al. (2017); Dabney et al. (2018); Rowland et al. (2019); Bellemare et al. (2023);
and Dabney et al. (2020) for additional mathematical details and extensions to the control setting.

Intriguingly, recent work in neuroscience has suggested that a similar algorithm could potentially underlie
value learning in biological neural circuits (Dabney et al., 2020; Lowet et al., 2020). In particular, Dabney
et al. (2020) recorded the activity of dopaminergic VTA neurons during a task with stochastic rewards and
showed that the neurons appeared to represent the full distribution of possible outcomes using an expectile
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representation as described above. More concretely, they showed that:

• The VTA neurons exhibited a range of different ‘reversal points’ – defined as the reward magnitude
at which the firing rate of a neuron did not change from its baseline firing rate. This is consistent
with a distributional RL theory, where the changes in neural firing rates from baseline correspond to
the expectile TD updates considered above. In this case, the reversal point of a neuron i should be
Vi ≈ ϵτi (Figure 6B).

• Neurons had different slopes describing the relationship between expected reward and firing rate in the
regimes where expected reward was above and below the reversal point (Vi) of each neuron. This is
consistent with the algorithm described in Equation 56 (Figure 6B).

• When independently fitting a slope to the data above (α+
i ) and below (α−

i ) the reversal point of neuron

i, the reversal point of the neuron was positively correlated with τi =
α+

i

α−
i +α+

i

. This is consistent with

the expectile distributional RL setting, where the reversal point is Vi ≈ ϵτi (Figure 6B).

• When ‘imputing’ the distribution (approximated as a set of delta functions) implied by the VTA
neurons when interpreted as expectiles (Figure 6C), the resulting fit was remarkably similar to the
true distribution of rewards in the experiment.

These findings generalize the canonical RPE view of Schultz et al. (1997), which can be seen as the averaged
version of the theory put forward by Dabney et al. (2020). The expectile regression algorithm investigated
by Dabney et al. (2020) relies on non-local TD updates and non-linear ‘imputation’ of the return distribution
p{Vi}(Z̃(s)) induced by the learned expectiles {Vi(s)}. However, recent work has suggested more biologically
plausible distributional RL updates that are also consistent with the biological data (Tano et al., 2020).

8 Discussion

In this work, we have provided a mathematical overview of some of the many reinforcement learning methods
that are commonly used in systems and computational neuroscience. We have also highlighted a range of
explicit parallels between these methods and findings in the neuroscience and cognitive science literature
to illustrate the utility of reinforcement learning as a framework for understanding biological learning and
decision making. This has ranged from classical work on reward prediction errors (Schultz et al., 1997)
to recent findings on the plausibility of distributional reinforcement learning in biological circuits (Dabney
et al., 2020).

While RL has thus already had a profound influence on systems neuroscience, several open questions remain.
In particular, much of the work in neuroscience has focused on simple stimulus-response or binary decision
making tasks. This is a far reach from ethologically relevant problems that involve processing complex
multimodal stimuli, decision making with long-lasting consequences, and complex high-dimensional motor
control. Some recent work building on deep RL has started to bridge this gap. For example, Banino
et al. (2018) showed the emergence of grid cells in agents navigating complex environments, Merel et al.
(2019) showed similarities between an RL agent trained on a suite of complex motor tasks and rodent motor
representations, and Jensen et al. (2023) showed parallels between a recurrent meta-RL agent and human
behaviour in a navigation task requiring temporally extended thinking. However, much work remains to be
done to extend our neuroscientific findings to ethologically relevant settings, both on the experimental side
and on the computational side.

A related challenge will be to combine different components of existing models to capture the generalist
nature of biological circuits. This is in contrast to past work, which has often focused on a single neural
circuit or function, such as motor control or navigation. Such a generalist approach will involve explicit
modeling of the roles of different brain regions, and more importantly it will require us to capture how
they interact with one another during learning and decision making. Clearly, such models will need to be
constrained by experimental data, both at the level of behaviour and at the level of neural activity. This
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is becoming increasingly feasible with recent advances in recording technologies, both for high-resolution
behavioural tracking (Mathis et al., 2018; Dunn et al., 2021) and for simultaneous and long-term recording
of neural activity (Steinmetz et al., 2021; Pachitariu et al., 2016; Dhawale et al., 2017).

Finally, most work on reinforcement learning in a neuroscientific context has considered short-term decision
making tasks, where planning and decision making in primitive state and action spaces is feasible. This is
in stark contrast to most human decision making, which occurs over extended timescales and often involves
hierarchies of decisions. For example, we may decide to pursue an undergraduate degree at Cambridge
University, which then requires us to (i) write an application, (ii) prepare for an interview, and (iii) arrange
our travel. Each of these processes in turn require us to plan increasingly low-level decisions, such as booking
a flight or deciding which bus to take to the airport. This is the topic of hierarchical reinforcement learning,
which has already been highlighted as a potentially useful model of human behaviour (Eckstein and Collins,
2020; Botvinick, 2008; Botvinick et al., 2009) and is becoming an increasingly important area of research in
machine learning (Pateria et al., 2021).

As is the case for hierarchical RL, this review has unfortunately not been able to cover in detail all topics in
reinforcement learning that are of interest to neuroscientists. A brief overview of this and additional topics
of interest is therefore provided in Section 9, which we hope can also serve as a useful pointer to the broader
reinforcement learning literature and some of the active research topics being pursued by the community.
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9 Additional topics of interest

While we have tried to provide a fairly comprehensive overview of topics in reinforcement learning of interest
to neuroscience, there are naturally many interesting areas that we have had to omit. Here we provide a
brief description of some of these together with pointers to relevant literature for those who are interested
in exploring them further.

9.1 Auxiliary losses

A key challenge in deep reinforcement learning is that of ‘representation learning’ (Botvinick et al., 2020).
In particular, because rewards are generally sparse, it can be difficult to learn the full processing pipeline
from raw inputs to a latent representation conducive to action selection on the basis of rewards alone. It
is therefore common in the machine learning literature to introduce additional ‘auxiliary costs’ to the RL
utility function, which use a richer data source to drive learning in the network. A common example is
to include predictive losses that require the agent to predict the next observation from the current state
and action (Jaderberg et al., 2016; Zintgraf et al., 2019). Such predictive losses have close parallels in
neuroscience, where it has been suggested that predictive learning could result in many of the representations
observed in biological circuits (Rao and Ballard, 1999; Stachenfeld et al., 2017; Whittington et al., 2020;
Blanco-Pozo et al., 2021) and serve as a foundation for model-based planning (Jensen et al., 2023). This
suggests a potentially important interaction between self-supervised representation learning and reward-
driven reinforcement learning in biological circuits.

9.2 Hierarchical reinforcement learning

So far, we have considered a simple environment consisting of states and actions, and all planning and
decision making has taken place in the space of action primitives. However, when planning over longer
horizons, it can be necessary to break down the overall policy into a series of sub-goals, sub-policies, or
‘skills’ (Sutton et al., 1999; Pateria et al., 2021). This is the topic of hierarhical reinforcement learning
(HRL) and ‘options’, where an agent learns a high-level policy over policies that can themselves be specified
in terms of primitive actions or even lower-level policies. Such HRL has been found to explain features of
human behaviour (Eckstein and Collins, 2020; Botvinick, 2008; Botvinick et al., 2009) and remains an area
of substantial interest in the neuroscience literature.

9.3 Off-policy & offline reinforcement learning

In most of the work considered in this paper, the experience used to train the RL agents has been sampled
from the policy of the agent itself. Indeed this is required for the gradients to be unbiased in the policy-
gradient setting. However, an area of substantial interest is that of offline reinforcement learning, where the
agent is trained from scratch on the basis of pre-collected experience (Levine et al., 2020). This is particularly
important in cases where online data collection is expensive or too risky but large-scale datasets exist, such
as in many healthcare settings. Off-policy reinforcement learning is the related problem of learning from a
combination of online data and pre-generated data, possibly from a ‘stale’ version of the current agent. The
off-policy setting is especially relevant to biology, where data collection is expensive and we therefore wish
to make maximum use of existing data. This can e.g. be achieved through experience replay, which can be
prioritized (instead of sampled at random) to maximize future reward and minimize temporal opportunity
costs (Mattar and Daw, 2018; Agrawal et al., 2022; Schaul et al., 2015).

9.4 Imitation learning

Related to the problem of offline reinforcement learning is that of imitation learning, where we also learn
from pre-collected data. However, in contrast to offline RL where we make no assumption about the quality
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of the policy used to collect the data, imitation learning assumes that the data has been collected by an
‘expert’ we wish to imitate (Levine et al., 2020). This is useful in cases where a large amount of expert
data is available, such as the case of autonomous driving (Pan et al., 2017). Imitation learning is clearly
important during early development in biological organisms, where we learn from observing the individuals
around us. Indeed, such imitation learning is a hallmark not just of humans but has also been demonstrated
in organisms as ‘simple’ as the bumblebee (Loukola et al., 2017).

9.5 Linear reinforcement learning

As we have seen in most of this tutorial, reinforcement learning is generally difficult and requires iterative
algorithms that often scale poorly with the problem size. However, there are settings where we can simplify
the problem to the point where it becomes analytically tractable in an approach known as ‘linear reinforce-
ment learning’ (Todorov, 2006, 2009). This is similar to the SR approach, where we saw that the value
function reduces to a linear function of the reward-per-state. Similar to how the SR matrix can be seen
as describing the dynamics of some ‘base policy’, we also define a base policy in linear RL and compute a
‘control cost’ as the KL divergence between transition dynamics with and without our controller:

Lctrl(s) = KL [u(s′|s)||p(s′|s)] , (57)

where p(s′|s) are the prior transition dynamics and u(s′|s) are the controlled transition dynamics marginal-
ized over the policy. For Lctrl(s) to be well-defined, we require u(s′|s) = 0 whenever p(s′|s) = 0, which
prevents impossible transitions even under our flexible controller. When subtracting this loss from the RL
objective, the resulting utility turns out to be convex in u and can therefore be solved efficiently for the
controller, which implicitly specifies the policy. This approach has recently been used as an explicit model
of biological decision making (Piray and Daw, 2021). It also has close parallels to learning and planning
as inference (Levine, 2018; Solway and Botvinick, 2012; Botvinick and Toussaint, 2012) and to RL with
information bottlenecks (Lai and Gershman, 2021). Both of these families of approaches also involve re-
inforcement learning with a KL-regularized reward function, and they have also been used as models of
biological decision making.

9.6 Successor features

In Section 6, we saw that the successor representation can be used as the basis of decision making that
flexibly adapts to environments with changing reward structures. However, we developed this framework
only in the tabular setting despite extending TD-learning and Q-learning to the ‘deep RL’ setting with
function approximation. This leaves open the question of whether a similar generalization of the SR exists.
This turns out to be the case and is known as ‘successor features’ (SF; Barreto et al., 2017), where the
expected future observation of a given feature of the environment is used in place of the expected future
state occupancy. Successor features have also been shown to have a biologically plausible implementation that
facilitates learning and generalization in noisy and partially observable environments (Vértes and Sahani,
2019).

9.7 Multi-agent reinforcement learning

We have only considered the case of single agents interacting with a black-box environment. However, in
many cases, multiple agents are simultaneously interacting with each other and the environment around
them (Gronauer and Diepold, 2022). This means that, from the point of view of a single agent, the other
agents are part of its environment. In such settings, there are interesting learning dynamics beyond the scope
of the present tutorial, but which are covered in detail by e.g. Gronauer and Diepold (2022), and which are
also of substantial interest in game theory (Nowé et al., 2012). In some cases, a whole group of agents may
be working together to maximize a single joint reward function – as is the case for members of a single sports
team. Interestingly, the learning of many individual neurons in the brain from a single common reinforcing
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signal (such as dopamine) can be modelled as such a multi-agent reinforcement learning problem (Sutton
and Barto, 2018). If the ‘agents’ (or neurons) are assumed to have Bernoulli-logistic outputs, Williams
(1992) shows that the independent learning of individual agents from the global reward signal leads to the
implementation of a policy gradient algorithm at the population level (Sutton and Barto, 2018).
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